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Wind Energy Integration

Wind curtailment occurs frequently and is costly

Figure : Curtailment at MISO
Figure : Curtailment Payment by Xcel
(MN)
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Transmission Switching

The reasons are:

Wind power output fluctuates hour by hour

Current transmission line network topology is insufficient and not
suitable for high penetration of renewable energy

4 / 27



Introduction
A Two Stage Chance-Constrained model

Computations

Transmission Switching

The reasons are:

Wind power output fluctuates hour by hour

Current transmission line network topology is insufficient and not
suitable for high penetration of renewable energy

4 / 27



Introduction
A Two Stage Chance-Constrained model

Computations

Transmission Switching

Transmission lines have been traditionally treated as a static asset

Corrective mechanism, maintenance, seasonal switching, etc.

Recent studies use transmission switching as a dynamic structure

Optimal transmission switching for dispatching [O’Neill et al. 05,
Khodaei & Shahidehpour 11, Fisher, O’Neill,& Ferris 08, Fisher et al.
08]
Sensitivity analysis [Hedman et al. 08]
Unit commitment and transmission switching with N-1 reliability
[Hedman et al. 10]
Revenue adequacy [Hedman, Oren, & O’Neill 11]
Prescreening and heuristics [Ruiz et al. 12, Fuller et al. 12, Liu et al.
12]
Static security and symmetry breaking [Liu et al. 12, Ostrowski 12]
......
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Why Transmission Switching Helps

An illustration [Hedman, Oren, & O’Neill 11]
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Problem Scope

Goal:
minimize thermal unit production costs
control wind curtailment level, e.g., no more than 15% curtailment
allowed

Approach
perform transmission switching for dispatching

Settings:
DC power flow
uncertainties: available amount of wind power

with known distributions
correlations among wind farms

unit commitment, N-1 security requirement ignored for now
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Two-Stage Decision Making With Uncertainties

Two-stage decision making
first stage: transmission switching: y
second stage: economic dispatch:pg (thermal), pw (wind)
uncertain wind prediction: ξ

A general optimization model:

min f (y, pg)

s.t. G(y, ξ) ∈ C,

where C := {x : x = Qgpg + Qwpw − q, pg, pw, q ≥ 0}.

f cost function (assuming zero cost for wind power)
given (x, ξ), second stage problem Qgpg + Qwpw ≥ G(x, ξ)
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A Two-Stage Chance-Constrained Model

A “hard” requirement:

for every ξ, G(y, ξ) ∈ C

Robust but too conservative !

A “soft” requirement:

P(G(y, ξ) ∈ C) ≥ 1− ε

two-stage chance constrained model [Nemirovski & Shapiro 04]
NOT the classic two-stage stochastic model

9 / 27



Introduction
A Two Stage Chance-Constrained model

Computations

A Two-Stage Chance-Constrained Model

A “hard” requirement:

for every ξ, G(y, ξ) ∈ C

Robust but too conservative !

A “soft” requirement:

P(G(y, ξ) ∈ C) ≥ 1− ε

two-stage chance constrained model [Nemirovski & Shapiro 04]
NOT the classic two-stage stochastic model

9 / 27



Introduction
A Two Stage Chance-Constrained model

Computations

Introduction to Chance-Constrained Programs

A constraint with deterministic data:∑
i

aixi ≥ 1

A constraint with uncertain data:∑
i

ãixi ≥ 1

whether the constraint holds becomes a random event

Chance (probabilistic) constraint

P(
∑

i

ãixi ≥ 1) ≥ 1− ε
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Sample Average Approximation (SAA)

a1, ..., aN : independent Monte Carlo samples of the random vector ã;

Original problem

Xε = {x ∈ X,

Pr{
∑

i

ãixi ≥ 1} ≥ 1− ε

}
Sample approximation

Xα = {x ∈ X,

1
N

N∑
i=1

I((aix ≥ 1) ≥ 1− α

}

MIP Model for SAA reformulation

a>i x + zi ≥ 1 ∀ i = 1, . . . ,m
m∑

i=1

zi ≤ k

x ∈ Rn
+

zi ∈ {0, 1} ∀ i = 1, . . . ,m
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Two-Stage Chance-Constrained Model

min
∑
t∈T

∑
g∈G

Fg(pgt) +
∑
n∈N

∑
t∈T

Hntqnt

s.t.
∑

g at n

pgt +
∑

w at n

pwt +
∑

(i,n)∈L

p(i,n)t −
∑

(n,j)∈L

p(n,j)t + qnt = Dnt ∀n ∈ N,∀t ∈ T

B(i,j)(θit − θjt)− p(i,j)t + (1− y(i,j))M ≥ 0 ∀(i, j) ∈ L, t ∈ T

B(i,j)(θit − θjt)− p(i,j)t − (1− y(i,j))M ≤ 0 ∀(i, j) ∈ L, t ∈ T

Pmin
(i,j)t y(i,j) ≤ p(i,j)t ≤ Pmax

(i,j) y(i,j) ∀(i, j) ∈ L, t ∈ T∑
(i,j)∈L

(1− y(i,j)) ≤ b,

pgt, pwt, p(i,j)t, θnt, qnt ≥ 0, y(i,j) ∈ {0, 1}.

P


∑

w∈W

∑
t∈T

pwt ≥ (1− α) ∗
∑

w∈W C̃w∑
t∈T

pwt ≤ C̃w ∀w ∈ W

 ≥ 1− ε
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SAA MIP Reformulation
min

∑
t∈T

∑
g∈G

Fg(pgt) +
∑
n∈N

∑
t∈T

Hntqnt

s.t.
∑

g at n

pgt +
∑

w at n

pwt +
∑

i or j=n

p(i,j)t + qnt = Dnt ∀n ∈ N, ∀t ∈ T

B(i,j)(θit − θjt)− p(i,j)t + (1− y(i,j))M ≥ 0 ∀(i, j) ∈ L, t ∈ T

B(i,j)(θit − θjt)− p(i,j)t − (1− y(i,j))M ≤ 0 ∀(i, j) ∈ L, t ∈ T

Pmin
(i,j)t y(i,j) ≤ p(i,j)t ≤ Pmax

(i,j) y(i,j) ∀(i, j) ∈ L, t ∈ T∑
(i,j)∈L

(1− y(i,j)) ≤ b,

∑
w∈W

∑
t∈T

pwt + ziM ≥ (1− α) ∗
∑
w∈W

Ci
w,∑

t∈T

pwt − ziM ≤ Ci
w ∀w ∈ W,

∑
i∈S

zi ≤ k ≈ ε× |S|,

pgt, pwt, p(i,j)t, pnt, θnt,≥ 0, y(i,j), z
i ∈ {0, 1}.
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Test Case

RTS96
117 branches, 73 buses, 111 thermal units
6 wind farms connected to two buses
4 time periods with loads from 5000 MW to 8500 MW per hour
Assume available wind energy accounts for 25% of total load
Congested lines
Curtailed wind power output ≤ 15% of total amount
Number of scenarios = 100 and risk level ε=0.1
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Preliminary Computational Results

Allow at most 5 lines to be switched off

With-Without Switching Comparison

Without Switching With Switching
Production Cost ($) 623,590 551,855
Load Shed (MWh) 325 0

Avg. Curtailment Level 33% 14%

Cost reduction due to
More economic dispatching
Higher utilization of wind power
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Preliminary Computational Results

Varying the number of lines that can be switched off

Similar pattern observed for wind curtailment
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Computational Challenges

Challenges
Combinatorial structures

Transmission switching: 2|L| possible network topologies
SAA:

(m
k

)
combinations of scenarios

Union of the the feasible regions (network topology/scenario
combination) is extremely non-convex

Loose LP relaxation
Big-M formulation

Switching and power flow costs are not in the objective function

An exploration on valid inequalities arising from substructures
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Valid Inequalities for SAA

SAA formulation ∑
w∈W

∑
t∈T

pwt + ziM ≥ (1− α) ∗
∑
w∈W

Ci
w ∀i ∈ S,

∑
i∈S

zi ≤ k

pwt ≥ 0, zi ∈ {0, 1}.

Rewrite as

x + hizi ≥ hi ∀i ∈ S,∑
i∈S

zi ≤ k

x ≥ 0, zi ∈ {0, 1}.

Assuming h1 > h2.... > h|S|, using cardinality constraint,

x + (hi − hk+1)zi ≥ hi ∀i = 1, ..., k,

x ≥ 0, zi ∈ {0, 1}.
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Mixing Set Inequalities

0-1 Mixing Set

P = {(x, z) ∈ R+ × {0, 1}n : x + hizi ≥ hi, i = 1, ..., n},

Studied by Atamtürk et al. ’00, Günlük & Pochet ’07, Luedtke ’10,
Kücükyavuz 12, and others.

Valid Inequalities for Mixing Set [Atamtürk et al. ’00]

y +

l∑
j=1

(htj − htj+1)ztj ≥ ht1 ∀T = {t1, ..., tl} ⊆ N, (1)

Inequalities (1) are sufficient for describing the mixing set P.

Polynomial separation algorithms.

19 / 27



Introduction
A Two Stage Chance-Constrained model

Computations

Mixing Set Inequalities

0-1 Mixing Set

P = {(x, z) ∈ R+ × {0, 1}n : x + hizi ≥ hi, i = 1, ..., n},

Studied by Atamtürk et al. ’00, Günlük & Pochet ’07, Luedtke ’10,
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Switching and Kirchoff’s Law

The formulation

B∆θ − f + My ≥ 0

B∆θ − f −My ≤ 0

lf y ≤ f ≤ uf y

lθ ≤ ∆θ ≤ uθ
y ∈ {0, 1}

The convex hull is merely the constraints themselves.

Reducing big-M value is the only way.
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Capacitated Fixed Charge Network Structure

Fixed charge network problem
Given a directed graph with finite capacity on arcs
Select a set of arcs so that the construction and flow costs are minimized

Difference
Kirchoff’s law
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Flow Cover Inequalities

Single Node Formulation

T =

y ∈ Bn, f ∈ Rn
+ :

∑
j∈N+

fj −
∑

j∈N−
fj ≤ b, fj ≤ ujyj, ∀j ∈ N

 (2)

Fixed charge network flow is a relaxation of power flow

22 / 27
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Flow Cover Inequalities

C ⊆ N+ is a dependent set if ∑
j∈C

uj > b.

A Family of Flow Cover Inequalities [Nemhauser & Wolsey 99]

If C ⊆ N+ is a dependent set, λ =
∑

j∈C uj − b, and S ⊆ N−, then∑
j∈C

[fj + (uj − λ)+(1− yj)] ≤ b +
∑
j∈S

λyj +
∑

j∈N−\S

fj (3)

is a valid inequality for T.
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Mixed DiCut Inequalities

Let S ⊂ N s.t.
∑

i∈S bi > 0; N+: arcs into S; N−: arcs out of S

Mixed Dicut Inequalities [Ortega & Wolsey 03]
The following mixed dicut inequality is valid∑

(j∈N−\C−
fj +

∑
j∈C−

b(S)yj ≥ b(S) +
∑
j∈C+

(fj − r(S)yj),

where b(S) =
∑

i∈S bi and r(S) = maxi{ui} − b(S).

24 / 27
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Preliminary Computational Results

Cuts only added to root node

Improvement Over CPLEX

Root LP+CPX B&B Nodes B&B Time
3% 11% 2%

Reasons
Kirchoff’s law ignored
Switching and power flow cost not in objective
Increased submode sizes by cuts added at root nodes

Work in progress
Use Kirchoff’s law to strengthen fixed charge network inequalities
Implement in a branch-and-cut fashion
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Future Research

More realistic settings
Add reliability requirement
Experiment with more real data

More efficient algorithms
Explore Kirchoff’s law to strengthen fixed charge network inequalities
Implement in a branch-and-cut fashion
Reduce the values of big-Ms
Heuristics
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Thank you!

Comments?

27 / 27


	Introduction
	A Two Stage Chance-Constrained model
	Computations

